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Equation of state for “classical’’ helium
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A classical base-line equation of state for fluid helium is calculated from a recent accurate pair poten-
tial and a classical statistical-mechanical theory. The range covered is 2.5-1400 K and densities up to 90
mol/dm>. Comparison with experimental data shows how quantum effects in *He behave in the dense-
fluid region. A pseudoclassical calculation based on experimental second virial coefficients fails to ac-
count for the high-density quantum effects. The volume expansion caused by zero-point motion can be

directly seen in the curvature of the Zeno line.

PACS number(s): 05.70. —a, 67.20.+k, 64.30.+1

In discussing quantum effects in fluids, it is useful to
have an accurate classical result as a base line. Such a re-
sult has usually been calculated with a pairwise additive
Lennard-Jones (12,6) potential [1-3]. For example,
Barocchi, Neumann, and Zoppi [4] calculated the ther-
modynamic properties of quantum fluids by the Wigner-
Kirkwood expansion up to order 4°, using as a base line
the classical equation of state (EOS) for a Lennard-Jones
fluid [3]. Unfortunately, the Lennard-Jones potential
give only a rather crude representation of the pair poten-
tials of real substances.

Two recent results make possible an easy improvement
of this situation for helium. One is the development of an
accurate pair potential for helium [5,6] and the other is
the derivation of a statistical-mechanical classical EOS
for simple fluids at all densities [7].

We have used these results to calculate the base-line
classical EOS for fluid helium, which is the same for both
“He and *He, from 2.5 to 1400 K and densities up to 90
mol/dm? (1 dm3®=1 liter). Comparison with experimen-
tal p-v-T data then gives information on the quantum
effects.

Another way to estimate quantum effects is to simulate
a real quantum fluid as a fictitious classical one by means
of an effective potential [2,8]. The present EOS furnishes
a convenient procedure for such a pseudoclassical calcu-
lation, since it allows the entire fluid p-v-T surface to be
calculated from just the experimental second virial
coefficient as a function of temperature [7]. We find that
this procedure produces an improvement over the com-
pletely classical result calculated directly from the pair
potential, but that it still fails to fit the experimental data.

In all studies involving base-line classical results, it has
not been possible to separate the effects of many-body
forces from the quantum effects, because too little is
known about such forces. However, some indication of
their relative importance can be obtained from a new
strong principle of corresponding states obtained from
the statistical-mechanical EOS [9]. Application to the
heavy noble-gas fluids indicates that many-body forces
can have significant effects on the EOS (e.g., up to a max-
imum of about 10% at densities of the order of the criti-
cal density, and less at both lower and higher densities
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[9]), but their magnitude is much less than the quantum
effects in helium at temperatures below about 50 K.
The EOS has the form [7]

—p—%=1+B2p+aP[g(0+)—l], (1
where p is the pressure, p is the number density, kT has
its usual meaning, B, is the second virial coefficient, a is
a temperature-dependent scaling factor for the softness of
the interatomic repulsive forces, and g(o 1) is the pair
distribution at contact for equivalent hard spheres of di-
ameter o, a diameter which is temperature dependent.
The quantities B,, a, and o are related to the interatomic
potential u (r) by integration,

By(T)=2m [ “[1—e """ ) dr 2)
r’ﬂ
ct(T)=217'f0 [l—euo(r)/kT]rzdr , (3)
da
2p03= =a+T—+ . 4
tro°=b(T)=a TdT 4)
Here u(r) is the repulsive part of u (r),
u(r)+e, r<r,
uolr)=lo, r>r )
’ m

where ¢ is the depth of the potential well and r,, is the
position of its minimum. This is the Weeks-Chandler-
Andersen [10] decomposition of u (r). Notice that a is
just the contribution of the repulsive forces to B, and
that b is an equivalent van der Walls covolume. For
g(oc™) we have used the Carnahan-Starling expression

(11,

glot)=1"172 ®)
(1—mn)

where n=>bp /4 is the packing fraction.

For the completely classical calculation we have used
the LM2M2 helium potential recommended by Aziz and
Slaman [6], with €/k=10.97 K and r,, =2.9695 A. For
the pseudoclassical calculation we have taken the experi-
mental values of B,(T) for “He from the International
Union of Pure and Applied Chemistry compilation [12].
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In particular, we used B,(T) to determine the Boyle tem-
perature 7T5=22.48 K and the Boyle volume
vp=18.16 cm?/mol, and used these values to find a(T)
and b (T) from tables based on a (12,6) potential [7]. The
parameters o and b are insensitive to details of the shape
of u (r). For comparison, the classical values of the Boyle
parameters calculated from the LM2M2 potential are
T =33.75 K and vz =18.84 cm?®/mol.

Calculated and experimental p vs p plots are shown in
Figs. 1-4 for fluid “He. The experimental uncertainty is
less than the size of the symbols. For the high-
temperature result shown in Fig. 1 the classical and pseu-
doclassical calculations are essentially indistinguishable,
and both are in good agreement with the IUPAC compi-
lations [12]. Quantum deviations become quite notice-
able at high densities at 50 K (Fig. 2), and are relatively
enormous at 10 K and below (Figs. 2—-4). The effect of
many-body forces on the classical calculations is to lower
the calculated pressure, at least up to densities about
three times the critical density [9], which would increase
the discrepancy between the calculated and experimental
results. That is, the many-body effects tend to conceal
the quantum effects at high densities. For reference the
critical constants of *“He are T,=5.2014 K, p,=2.2746
bar, and p, =17.399 mol/dm> [12]. The pseudoclassical
calculations move the isotherms in the right direction,
but are still far from the experimental points, except at
low densities where B, dominates.

In Fig. 5 we show the Zeno contours, the locus of T vs
p points at which the compression factor, Z =p /pkT, is
unity. (The intercept on the T axis is the Boyle tempera-
ture T3). The Zeno contour has been found to be nearly
linear for a wide variety of normal fluids [13,14], and also
for the strong principle of corresponding states [15]. The
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FIG. 1. High-temperature p-p isotherms for “He. The curves
are the classical calculation and the points are from the IUPAC
compilation [12]. 1dm’=1 liter.
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FIG. 2. Intermediate-temperature p-p isotherms for “He.
The solid curves are classical and the dashed curves are pseu-
doclassical. The points are from Ref. [12], with those for 10 K
shown as circles.

calculated classical and pseudoclassical contours are con-
cave upward, whereas the experimental contour curves
strongly downward. This seems to be clearly a quantum
effect, in which the volume at a given temperature is ex-
panded by the zero-point motion, reducing the density.
Also shown in Fig. S is the empirical Zeno contour for
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FIG. 3. Same as Fig. 2, for 5 K. The 10-K points (circles) are
repeated to facilitate comparison with Fig. 2. ’
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FIG. 4. Same as Fig. 3, for 2.5 K.

the heavy noble-gas fluids, scaled to the classical T and
vy of He, which is indeed nearly straight [15].

Another route to a classical base-line EOS would be to
scale the empirical data for the classical noble-gas fluids
(Ar, Kr, Xe). For example, reduced plots of pr2 /e vs
pr> for reduced isotherms kT /e of the classical fluids
would serve as the base line for similar plots for He. Al-
though this would no doubt be an improvement over use
of the Lennard-Jones potential, we prefer the present pro-
cedure for two reasons. First, it is still necessary to know
accurate scaling factors € and r,, from a potential for He;
if one has an accurate potential, it is just as easy to do the
numerical integrations to find B,, a, and b, as we have
done. Second, the procedure requires that the noble-gas
potentials all have the same shape—that is, the potentials
would coincide when plotted as u /€ vs 7 /r,,. While this
is almost the case [16], there are quite noticeable devia-
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FIG. 5. Zeno contours (T vs p for Z=p /pkT=1) for ‘He.
Solid curve is classical, dashed curve is pseudoclassical, points
are experimental [12], and dashed-dotted curve corresponds to
Ar, Kr, Xe.

tions from such a universal shape [17-19].

To summarize, a classical base-line EOS for fluid heli-
um has been calculated from an accurate pair potential
and statistical-mechanical theory. As expected, quantum
effects are large at low temperatures, and especially at
high densities. The results can serve as a base line for the
calculation of quantum effects, for example, by a
Wigner-Kirkwood expansion. A pseudoclassical calcula-
tion using experimental second virial coefficients fails to
account for the quantum effects at high densities. The
unusual deviation from linearity of the Zeno contours can
be explained as the result of volume expansion caused by
zero-point motion.

We thank Dr. Steven Rick for his help.

[1] L. Monchick, E. A. Mason, R. J. Munn, and F. J. Smith,
Phys. Rev. 139, A1076 (1965).

[2] L. W. Bruch, I. J. McGee, and R. D. Murphy, J. Low
Temp. Phys. 35, 185 (1979).

[3]J. J. Nicholas, K. E. Gubbins, W. B. Streett, and D. J
Tildesley, Mol. Phys. 37, 1429 (1979).

[4] F. Barocchi, M. Neumann, and M. Zoppi, Phys. Rev. A

36, 2440 (1987).

[5] M. J. Slaman and R. A. Aziz, Int. J. Thermophys. 12, 837
(1991).

[6] R. A. Aziz and M. J. Slaman, J. Chem. Phys. 94, 8047
(1991).

[7]1 Y. Song and E. A. Mason, J. Chem. Phys. 91, 7840 (1989).
[8] D. Thirumalai, R. W. Hall, and B. J. Berne, J. Chem.
Phys. 81, 2523 (1984).

[9] G. Ihm, Y. Song, and E. A. Mason, J. Chem. Phys. 94,
3839 (1991).

[10] J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem.
Phys. 54, 5237 (1971).

[11] N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51, 635
(1969).

[12] S. Angus, K. M. de Reuck, and R. D. McCarty, Interna-
tional Thermodynamic Tables of the Fluid State, Vol. 4,
Helium-4 (Pergamon, Oxford, 1977).

[13] D. Ben-Amotz and D. R. Herschbach, Israel J. Chem. 30,
59 (1990).

[14]J. Xu and D. R. Herschbach, J. Phys. Chem. 96, 2307
(1992).

[15] Y. Song and E. A. Mason, J. Phys. Chem. 96, 6852 (1992).

[16] G. Scoles, Ann. Rev. Phys. Chem. 31, 81 (1980).



2196 BRIEF REPORTS 47

[17] B. Najafi, E. A. Mason, and J. Kestin, Physica A 119, 387 Springer Series in Chemical Physics Vol. 34 (Springer-
(1983). Verlag, Berlin, 1984), pp. 5-86.
[18] R. A. Aziz, in Inert Gases: Potentials, Dynamics and Ener- [19] A. D. Koutselos, E. A. Mason, and L. A. Veihland, J.

gy Transfer in Doped Crystals, edited by M. L. Klein, Chem. Phys. 93, 7125 (1990).



